

Remote Monitoring Example
Remote RF Power Output Monitor

Remote RF Power Output
Monitoring

● Monitor RF power output via the Ethernet
● We will use an Arduino to gather the RF power

data and send it to a remote computer
– Arduino UDP packet server at transmitter site
– C# client to display data on computer off-site

Remote RF Power Output
Monitoring

● Sensor to provide voltage based on RF power
level

● Arduino or other MCU with analog inputs and
Ethernet capability

RF Power Output Monitoring
Possible Sensors

● Bird Wattmeter line sections and elements
– Output voltage depends on element (next slide)

● W1GHz power meter
– http://www.w1ghz.org/new/portable_powermeter.pdf

– Output voltage range 0.25 – 2.5 V

● Analog Devices Power Detectors

http://www.w1ghz.org/new/portable_powermeter.pdf

RF Power Output Monitoring
Bird Elements

● Output voltage depends on element
– 100H Element @ 100 watts: 0.6V (unterminated)

– 250H Element @ 250 watts: 0.7V (unterminated)

– 1000H Element @ 1000 watts: 0.75V (unterminated)

– http://www.meterbuilder.com/mb1/bird-line-sections.html
● Recommends using 100H up to full legal limit

● Voltage/power relationship is non-linear

– Software approach is perfect for this circumstance (you can calibrate using a
known calibration curve)

http://www.meterbuilder.com/mb1/bird-line-sections.html

RF Power Output Monitoring
Bird Elements

Analog Devices Power Detectors

Log
Detectors
– AD8318

● $13.37

on eBay

AD8318 Performance

Analog Devices Power Detectors

● Analog Devices ADL5XDETECTRKIT Evaluation Board
– 3 detectors: ADL5511, ADL5513, ADL5902
– DC – 9 GHz
– -60 to 0 dBm or -30 to +30 dBm depending on detector
– $10 per board; currently may be unavailable
– http://www.richardsonrfpd.com/Pages/Product-Details.aspx?productId=1090721

– Output voltage range 26 mV to 3.5 V (peak V varies among 3 detectors)

http://www.richardsonrfpd.com/Pages/Product-Details.aspx?productId=1090721

RF Power Output Monitor

ADL5511 Volts Out vs Power In

RF Power Output Monitor
Our Design Specs

● 16 input channels
● Graphic Display
● Remote selection of channel for graphic display, SWR

measurement
● Inexpensive:

– $10 for Arduino, $10 for the Analog Devices Evaluation
Board or $13.37 for AD8318 Detector

Mini Window
Automatically Selects Input Channel with Largest Signal

With reverse channel
selected in setup window

With no reverse channel
selected in setup window

Remote RF Power Meter Demo

Remote Power Meter Code
● Arduino sketch is here:

http://w3sz.com/W3SZ_Simple_Remote_PowerMeter.ino

● Zip file of C# source and binaries is here:

http://w3sz.com/W3SZ_Remote_PowerMeter.zip

http://w3sz.com/W3SZ_Simple_Remote_PowerMeter.ino
http://w3sz.com/W3SZ_Remote_PowerMeter.zip

RF Power Output Monitor
Code at the Arduino End

1) Include Libraries

2) Define and initialize constants and variables

3) Setup()
Define analog input pins

4)Loop()
Read voltage inputs from sensors via the analog input pins

Send selected voltage values to PC for display

Receive commands from PC
Turn measurement process on or off

Select channels to send to PC (up to 16 simultaneous channels)

Include Libraries, Define Variables
Preprocessor

directives to include
libraries

Define Ethernet-related Constants
and Variables

Ethernet.h
● Library to work with Ethernet Shield, Ethernet Shield 2, and

Leonardo Ethernet. Contains the classes:

Ethernet: members begin, localIP, maintain

IPAddress: member IPAddress(address)

Server: members Server, EthernetServer, begin, available, write,
print, println

Client: members Client, EthernetClient, if(EthernetClient),
connected, connect, write, print, println, available, read, flush, stop

EthernetUdp members begin, read, write, beginPacket, endPacket,
parsePacket, available, stop, remoteIP, remotePort

Define Ethernet-related Constants
and Variables

Ethernet.IPAddress
defines an IP address

EthernetUdp.h
● Library to send/receive UDP packets with Arduino. Contains the class EthernetUdp

– Members include:
● begin(uint16_t)
● beginMulticast(IPAddress, uint16_t)
● beginPacket(IPAddress ip, uint16_t, port)
● endPacket()
● write(uint16_t)
● write(const uint8_t *buffer, size_t size)
● parsePacket()
● available()
● read()
● read(unsigned char* buffer, size_t len)
● peek()
● flush()
● remoteIP()
● remotePort()
●

EthernetUDP.begin
EthernetUDP.beginMulticast
EthernetUDP.beginPacket
EthernetUDP.endPacket
EthernetUDP.write
EthernetUDP.parsePacket
.
.
.
.

Define Ethernet-related Constants
and Variables

We are defining the object Udp that
is an instance of the class
EthernetUdp

UDP_TX_PACKET_
MAX_SIZE is
defined as 24 bytes
in EthernetUdp.h

Define / Initialize Sensor Input
Variables

Define/Initialize Control Parameters

Setup Pin
Modes, Start
Ethernet and
Serial Port

Ethernet.begin(mac, ip)
Initializes the ethernet
library and network
settings. mac is array of
6 bytes. ip is array of 4
bytes. Returns nothing.

EthernetUdp.begin(port)
Initialize, start listening
on specified port.
Returns 1 if successful,
0 if there are no sockets
(unsuccessful)

Ethernet.localIP() Obtains
the IP address of the
Ethernet shield. Returns
the IP address.

Send Startup Message to Serial
Port

Start Loop, Read Voltages

UDP.parsePacket
checks for packet and reports size

EthernetUDP.parsePacket():
Returns the size of the
packet in bytes or 0 if no
packets are available

EthernetUDP.remoteIP():
Returns the IP address of
the host who sent the
current incoming packet

EthernetUDP.remotePort():
Return the port of the host
who sent the current
incoming packet

Read packet and parse string to
extract commands sent from PC

EthernetUDP.read(buffer,
len): Read up to len
characters from the
current packet and place
them into buffer, Returns
the number of characters
read, or 0 if none are
available

UDP_TX_PACKET_
MAX_SIZE is
defined as 24 bytes
in EthernetUdp.h

Arduino String class
● Members include:

charAt

compareTo

concat

c_str

endsWith

equals

equalsIgnoreCase

getBytes

indexOf

lastIndexOf

length

remove

replace

reserve

setCharAt

startsWith

substring

toCharArray

toInt

toFloat

toLowerCase

toUpperCase

trim

Read packet and parse string to
extract commands sent from PC

String.indexOf(val) Locates a character or
String val within another String. Returns the
index of val within the String, or -1 if not
found.

String.substring(val1,
val2) Gets a substring
of a String. The starting
index val1 is inclusive
(the corresponding
character is included in
the substring), but the
optional ending index
val2 is exclusive.
Returns the substring.

Continue parsing string to extract
commands sent from PC

More parsing string to extract
commands sent from PC

Finish reading commands
Start reading sensor data

Form data string

Continue forming data string

Finish forming data string

Data string example
All 16 channels ON

Send Data String And End Loop

Arduino String class
● Members include:

charAt

compareTo

concat

c_str

endsWith

equals

equalsIgnoreCase

getBytes

indexOf

lastIndexOf

length

remove

replace

reserve

setCharAt

startsWith

substring

toCharArray

toInt

toFloat

toLowerCase

toUpperCase

trim

Send Data String And End Loop
string.length() Returns the
length of the String in
characters.

string.toCharArray(
buf, len) Copies
the String’s
characters to the
supplied buffer buf
of size len. Returns
nothing.

Send Data String And End Loop
EthernetUDP.beginPacket(remoteIP, remotePort):
Starts a connection to write UDP data to the remote
connection. Returns 1 if successful, 0 if there was a
problem resolving the hostname or port.

EthernetUDP.write(message) Writes UDP
data to the remote connection. Returns
the number of characters sent.

EthernetUDP.endPacket():
Called after writing UDP data
to the remote connection.
Returns 1 if the packet was
sent successfully, 0 if there
was an error.

What happens at the other end?
● C# program gets data string

● C# program parses data
● C# program displays data
● C# program sends channel On/Off commands to Arduino

Remote RF Power Monitor Coding

● Very Straightforward:
– Got Some Input from analog input pins
– Did Something With It (formed data string to send to PC)
– Produced Some Output (UDP packet of data)

Programming Steps
1) Included libraries containing external functions

Ethernet.h

string.h

EthernetUDP.h

2) Defined variables and constants

3) Setup ()
 Defined and initialized Analog I/O pins

 Defined, started serial port, Ethernet port

4) Loop()
 Received input from Ethernet port / Analog pins

 Parsed / processed data to extract desired information

 Used information derived from data to perform desired task (e.g. switch channels on or off) and to send RF Power Data to
client computer

5) From within Loop(), called other functions() as needed (e.g. Serial.x, Udp.x, data.toCharArray, delay)

Wrap-up

What Now?
● Pick a Project
● Choose “best” device for project
● Use Google and code examples from this

seminar to get started and write the code
● Have fun!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

